The following example demonstrates the VARIANCE, COVARIANCE and CORRELATION functions to analyze grid points. It also shows the technique of putting the CrossTab into a MACRO, calling the MACRO to generate the specific result for a given dataset.
pointRec := { REAL x, REAL y }; analyze( ds ) := MACRO #uniquename(rec) %rec% := RECORD c := COUNT(GROUP), sx := SUM(GROUP, ds.x), sy := SUM(GROUP, ds.y), sxx := SUM(GROUP, ds.x * ds.x), sxy := SUM(GROUP, ds.x * ds.y), syy := SUM(GROUP, ds.y * ds.y), varx := VARIANCE(GROUP, ds.x); vary := VARIANCE(GROUP, ds.y); varxy := COVARIANCE(GROUP, ds.x, ds.y); rc := CORRELATION(GROUP, ds.x, ds.y) ; END; #uniquename(stats) %stats% := TABLE(ds,%rec% ); OUTPUT(%stats%); OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c, vary - (syy-sy*sy/c)/c, varxy - (sxy-sx*sy/c)/c, rc - (varxy/SQRT(varx*vary)) }); OUTPUT(%stats%, { 'bestFit: y='+(STRING)((sy-sx*varxy/varx)/c)+' + '+(STRING)(varxy/varx)+'x' }); ENDMACRO; ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec); ds2 := DATASET([{1.93896e+009, 2.04482e+009}, {1.77971e+009, 8.54858e+008}, {2.96181e+009, 1.24848e+009}, {2.7744e+009, 1.26357e+009}, {1.14416e+009, 4.3429e+008}, {3.38728e+009, 1.30238e+009}, {3.19538e+009, 1.71177e+009} ], pointRec); ds3 := DATASET([{1, 1.00039}, {2, 2.07702}, {3, 2.86158}, {4, 3.87114}, {5, 5.12417}, {6, 6.20283} ], pointRec); analyze(ds1); analyze(ds2); analyze(ds3);